Skip to main content

Bedrock - Writer Palmyra

Overview​

PropertyDetails
DescriptionWriter Palmyra X5 and X4 foundation models on Amazon Bedrock, offering advanced reasoning, tool calling, and document processing capabilities
Provider Route on LiteLLMbedrock/
Supported Operations/chat/completions
Link to Provider DocWriter on AWS Bedrock ↗

Quick Start​

LiteLLM SDK​

SDK Usage
import litellm
import os

os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = "us-west-2"

response = litellm.completion(
model="bedrock/us.writer.palmyra-x5-v1:0",
messages=[{"role": "user", "content": "Hello, how are you?"}]
)

print(response.choices[0].message.content)

LiteLLM Proxy​

1. Setup config.yaml

proxy_config.yaml
model_list:
- model_name: writer-palmyra-x5
litellm_params:
model: bedrock/us.writer.palmyra-x5-v1:0
aws_access_key_id: os.environ/AWS_ACCESS_KEY_ID
aws_secret_access_key: os.environ/AWS_SECRET_ACCESS_KEY
aws_region_name: us-west-2

2. Start the proxy

Start Proxy
litellm --config config.yaml

3. Call the proxy

curl Request
curl -X POST http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "writer-palmyra-x5",
"messages": [{"role": "user", "content": "Hello, how are you?"}]
}'

Tool Calling​

Writer Palmyra models support multi-step tool calling for complex workflows.

LiteLLM SDK​

Tool Calling - SDK
import litellm

tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state"
}
},
"required": ["location"]
}
}
}
]

response = litellm.completion(
model="bedrock/us.writer.palmyra-x5-v1:0",
messages=[{"role": "user", "content": "What's the weather in Boston?"}],
tools=tools
)

LiteLLM Proxy​

Tool Calling - curl
curl -X POST http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "writer-palmyra-x5",
"messages": [{"role": "user", "content": "What'\''s the weather in Boston?"}],
"tools": [{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "The city and state"}
},
"required": ["location"]
}
}
}]
}'

Document Input​

Writer Palmyra models support document inputs including PDFs.

LiteLLM SDK​

PDF Document Input - SDK
import litellm
import base64

# Read and encode PDF
with open("document.pdf", "rb") as f:
pdf_base64 = base64.b64encode(f.read()).decode("utf-8")

response = litellm.completion(
model="bedrock/us.writer.palmyra-x5-v1:0",
messages=[
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": f"data:application/pdf;base64,{pdf_base64}"
}
},
{
"type": "text",
"text": "Summarize this document"
}
]
}
]
)

LiteLLM Proxy​

PDF Document Input - curl
# First, base64 encode your PDF
PDF_BASE64=$(base64 -i document.pdf)

curl -X POST http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "writer-palmyra-x5",
"messages": [{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": "data:application/pdf;base64,'$PDF_BASE64'"}
},
{
"type": "text",
"text": "Summarize this document"
}
]
}]
}'

Supported Models​

Model IDContext WindowInput Cost (per 1K tokens)Output Cost (per 1K tokens)
bedrock/us.writer.palmyra-x5-v1:01M tokens$0.0006$0.006
bedrock/us.writer.palmyra-x4-v1:0128K tokens$0.0025$0.010
bedrock/writer.palmyra-x5-v1:01M tokens$0.0006$0.006
bedrock/writer.palmyra-x4-v1:0128K tokens$0.0025$0.010
Cross-Region Inference

The us.writer.* model IDs use cross-region inference profiles. Use these for production workloads.